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Abstract—This paper develops simulation software designed
for stationary hexapod robots. This paper focuses to address
the gap in existing tools for simulation that focus primarily on
dynamic analysis. This simulation puts emphasis on the calcula-
tion and visualization of Forward Kinematics (FK) and Inverse
Kinematics (IK). This would allow for accurate predictions of
joint angles and end-effector poses based on the varied inputs
for design.

Index Terms—Hexapod, Simulation, Inverse Kinematics, Sta-
tionary

I. INTRODUCTION

The current field of robotics has seen several advancements
in simulation, especially for efficient designing processes and
increasing the robot’s performance in different environmental
conditions. Prior research done by Michel (2004) shows the
mobile robot simulation software which supported modeling,
programming and simulation of various types of mobile robots
[1]. The foundational methods developed by such a platform
provide a certain framework for simulation tools. In addition,
we can also see the work of Ma Jin et al. (2023) expanding
on the work by showing dynamic modeling and simulation
with the focus on trajectory prediction [2]. This paper shows
the different simulation models. Even after this prior research,
there remains a gap in the field of simulation tools for sta-
tionary hexapod robots. Existing tools have always dealt with
the dynamic simulation, focusing on the movement analysis,
leaving a need for a dedicated software that calculates as well
as visualizes the outcomes of the Forward Kinematics (FK)
and Inverse Kinematics (IK) for stationary applications. By
extending the capabilities of such platforms a tool can be
built to help people in designing and visualizing the robot.
This will also assist in optimizing the joint angles, kinematic
calculations, and refining end effector poses based on the
different design configurations. This project is inspired by a
Bare minimum Hexapod Robot Simulator [5], which simplifies
complex motion into somewhat manageable components that
can assist with understanding the design and configuration.

II. MODELING
A. Geometric Modeling

Mathematical modeling is one of the most important steps
while starting the visualization and simulation of the robot.

Here, we start with geometric modeling of the system which
defines the physical structure in a mathematical framework
which is helpful while allocating poses. The body is modeled
as a hexagonal prism as seen in Figure. 1, to which all the legs
are attached. This is the ideal starting shape, since it provides
symmetry and balance for even distribution across the legs.
The coordinate system here is centered at the Center of Gravity
(COQG) for further simplification of calculation. The body of
the robot is defined by three key parameters: f, side length
s, and mid-length m. These parameters f show the distance
from the center to the front vertices of the hexapod along the
x-axis.s sets show the distance from the center to the side
vertices along the y-axis. m shows the midpoint of the front
and back edges along the x-axis.

Using these parameters, the vertices are calculated as fol-
lows:

PO = (m7010>7 P3 = (_m7070)’
Plz(f7870)7 P4:(_f7_870)7
P2:(7f7570)7 P5:(f77570)'

This hexapod shape provides symmetry which simplifies the
simulation code and makes it more open to change. This also
provides a modular design as each side is designed as its own
modulus with legs, allowing for easy changes. This shape also
provides a certain level of inherent stability which not only
supports the stability but also helps with making the simulation
environment.

B. Leg Kinematics

We then design the leg of the hexapod simulator which is
important to establish the movements. The legs are usually
modeled to copy kinematics of creatures like spiders, ants,
etc. This consists of three main segments: the Coxa, Femur,
and Tibia. Coxa, which is attached directly to the body, acts as
the steering mechanism of the robot as it allows for movement
in the horizontal direction. Then we have the Femur which is
usually the longest segment and is required for the elevation of
the robot. Then we have the Tibia, which makes contact with
the ground and is crucial for adjusting the stance and grip on
the surface. These three segments provide enough degrees of
freedom to navigate different terrains.



Fig. 1. Initial Geometry of the Hexapod Robot

The kinematic chain for each leg is described by a series
of transformations from the robot’s body (base frame) to the
end of the Tibia (foot). The origin of the Coxa is at the point
where it attaches to the body. It rotates around by an angle
Ocoxa- The Femur extends from the end of the Coxa and rotates
around its joint by an angle O, The Tibia, extending from
the Femur, adjusts the final position of the leg and rotates by
Biibia-

The position of the leg’s end (foot) can be mathematically
expressed in terms of the joint angles and the lengths of the
segments. Assuming the plane of movement is the X-Y plane,
the transformation matrices can be represented as:

_COS(acoxa) - Sin(ecoxa) 0 1 0 Leoxa
Teoxa = Sin(ecoxa) Cos(ecoxa) 0]-10 1 0 )
I 0 0 1 0 0 1
_COS(efemur) - Sin(afemur) 0 1 0 Lfemur
Tromur = Sin(efemur) Cos(efemur) 0]-10 1 0 )
I 0 0 1 0 0 1
[cos(Bipia) — sin(fypia) O 1 0 Lipia
Tiibia = |sin(Oibia)  cos(Bibia) O] - [0 1 0
I 0 0 1 0 0 1

The following figure illustrates the segmentation and basic
joint configuration of a typical hexapod leg. Each segment is
labeled to demonstrate the connection and articulation points.

C. Inverse Kinematics

Inverse kinematics (IK) is an important computational step
used in robotic systems to determine the necessary joint angles
that achieve a desired position of the end effector (in this
case, the foot of the hexapod’s leg). For the hexapod, this
involves calculating the angles at which each leg’s joints must
be oriented to allow the robot’s foot to reach a specific point
in space. Unlike forward kinematics, where the positions are
computed from given joint angles, inverse kinematics might

Fig. 2. Leg Components of the Hexapod Robot

not have a unique solution, or in some cases, any solution at
all, because of the physical constraints of the joints.

Given the leg structure consisting of the Coxa, Femur, and
Tibia we can describe the position of the foot in terms of
these joint angles. The positions (x,y) of the end-effector can
be derived by backward chaining from the foot to the body,
considering the lengths of the segments L¢oxa, Lfemurs Liibia and
the aﬂg]es 900xa> ermura etibia-

The position equations for a 2D projection on the X-Y plane
are:

T = Leoxa €08(0coxa) + Ltemur €OS(Ocoxa + Oremur)
+ Liibia c08(Ocoxa + Otemur + Grivia),

Y = Leoxa S0 (Ocoxa) + Liemur SiN(Ocoxa + Ofemur)
+ Liibia Sin(Ocoxa + Ofemur + Oribia)-

Due to the non-linear nature of the equations, solving
these equations analytically is complex and often not feasible.
Therefore, numerical methods such as the Newton-Raphson
method or optimization techniques are employed. This ap-
proach involves initializing the joint angles with a guess,
often based on the last known configuration.Then iteratively
adjusting the angles to minimize the difference between the
current position of the end-effector and the desired position.
Finally using the Jacobian matrix of partial derivatives of the
position functions with respect to the joint angles to guide the
adjustments.

For a leg with three joints, the Jacobian J is given by:

oz oz oz
J — 90coxa OOtemur 8glibizn

Oy y y
80c0xa 8el'emur 8elibia

This matrix is used to compute the change in angles needed to
achieve a small movement toward the target position, typically
through the equation:

AO = J1Ax,
where Ax is the vector of differences between the current and

desired end-effector positions, and A# is the vector of changes
in joint angles.



D. Forward Kinematics

Forward kinematics (FK) in robotic systems is the calcula-
tion of the position and orientation of the robot’s end-effector
(e.g., Platform or in this case the foot-tip of a hexapod) based
on the specified joint angles without considering forces or
physics involved. This process involves the use of kinematic
chains.

Each leg of the hexapod robot can be considered as a
separate kinematic chain. The legs are articulated with three
segments. To calculate the position of each leg’s end-effector
, we define the transformation matrices for each segment.
The total transformation from the base of the leg to the
foot is obtained by multiplying the transformation matrices
of each segment in sequence. Each joint then contributes a
rotational transformation based on its angle, followed by a
translational transformation based on the segment’s length.
The transformation matrix for each segment can be expressed
as a product of rotation and translation matrices:

Tcnxa = ROtZ(ocoxa) . TranS(Lcoxaa 07 0)7
Tfemur = ROtZ(efemur) : Trans(Lfemura 07 0)7
Tiibia = Rotz (Giivia) - Trans(Liipia, 0, 0).

Where Rotyz () represents a rotation matrix around the Z-
axis by 6 degrees, and Trans(x,y, z) represents a translation
matrix that moves the point by = units along the X-axis, y
units along the Y-axis, and z units along the Z-axis.

The position of the end-effector in the robot’s base frame is
then calculated by sequentially applying these transformations
from the base of the leg to the foot:

Tfoot = Tcoxa ' Tfemur : Ttibia

This final transformation matrix T, provides the coordi-
nates of the foot relative to the base of the leg, considering all
the joint angles and segment lengths.

In a simulation environment, forward kinematics is used
to update the position of each leg’s foot in real-time as the
joint angles change. This allows for visualizing the robot’s
walking pattern and testing different gait strategies under
various simulated conditions. Accurate forward kinematics
calculations are essential for ensuring that the simulated move-
ments correspond to what would be physically possible in a
real robot.

E. Stability Analysis

Stability analysis is essential for ensuring that the hexapod
robot remains balanced and functional across various opera-
tional scenarios and configurations. This analysis focuses on
both the static and dynamic aspects of stability, with a primary
emphasis on the relationship between the robot’s COG and its
support polygon (SP), formed by the feet currently in contact
with the ground. For stability, the COG must stay within the SP
during all times. If the COG falls outside the SP, the robot risks
tipping over. For this the instantaneous position of the COG

is calculated based on the robot’s configuration. To enhance
the precision and reliability of stability checks, Barycentric
coordinates are utilized. These coordinates help determine if
the COG, projected onto the ground plane, remains within
the triangle formed by any three of the robot’s feet. For this
we calculate the normal vector to the plane formed by any
three contact points.then project the COG onto this plane to
determine its position relative to the SP.

F. Gait Walking Sequence Generation

To simulate the walking motion of the hexapod robot, a gait
walking sequence generation function is implemented within
the modeling framework. This function allows the specification
of various parameters to define the gait pattern, including the
type of gait, hip swing angle , lift swing angle, the number of
steps, the direction of movement, and rotation angle.

The implemented function makes a walking sequence based
on the specified parameters. Currently, in this paper we focus
on the Tripod gait. In the Tripod gait, the robot moves
by alternating between two sets of three legs, forming a
stable tripod configuration at all times. The function generates
coordinated movements for each leg, including variations in
the angles of the coxa, femur, and tibia joints over the specified
number of steps. These sequences are stored in the dictionary,
indexed by the leg number.

The coxa angles determine the lateral movement of the
leg, while the femur and tibia angles control the lifting and
lowering of the leg, respectively. By adjusting these angles
over time, the hexapod can achieve forward movement while
maintaining stability.

Future work on the simulator will include the implemen-
tation of additional gait patterns, such as the Symmetric,
Symmetric Forward Wave, and Crab gait, and the integration
of more sophisticated gaits based on the real animal motion.

G. Kinematic Phase Diagram

The kinematic phase diagram is another crucial tool for
understanding the coordinated movement of the hexapod
robot’s legs during locomotion. It shows how the phases of
leg movement evolve over time, helping in the design of gait
patterns for efficient and stable motion.

To generate the kinematic phase diagram, a Python function
is implemented. This function takes parameters such as the
duty factor, number of legs, and scale in the x-direction to
compute the phase diagram array and its dimensions.

The duty factor represents the proportion of time a leg
spends in the supporting phase versus the swing phase during
a gait cycle. Once the phase diagram array is generated, a
visualization function is called to create a heatmap plot using
the Plotly library. This plot displays the phase diagram in a
graphical format, with the x-axis representing the kinematic
phase and the y-axis indicating the individual legs of the
hexapod.

The resulting kinematic phase diagram provides valuable
insights into the coordination and synchronization of leg
movements during various gait patterns. By analyzing and



optimizing these phase diagrams, researchers and engineers
can enhance the hexapod robot’s locomotion capabilities,
improving its performance across different terrains and en-
vironments.

III. VISUALIZATION AND USER INTERFACE

For the hexapod robot simulator, an interactive graphical
user interface (GUI) is developed using Matplotlib, a versatile
plotting library and Dash, which is a framework for building
data visualization interfaces that supports complex 3D graph-
ics.

The body of the hexapod, including its head, is visualized
using scatter plots for focal points and a 3D polygon collection
to depict the body’s geometry. Each leg is represented as a
series of line segments connected by points that denote the
joints and extremities of the leg segments, providing a clear
depiction of the hexapod’s articulation.

Movement animation for the hexapod is facilitated by an
animation function in python, which enables animation by
repeatedly calling an update function that recalculates the
positions of the hexapod’s body and legs based on pose that is
calculated . This ensures that the visualization updates reflect
the changes in the robot’s posture and position, offering real-
time feedback on its dynamic behavior.

The GUI allows for interactive control, enabling users to
adjust parameters such as gait, swing, rotation and more to
observe different behaviors. This interactive capability is cou-
pled with immediate visual feedback on changes to the robot’s
configuration, making the GUI a great tool for debugging and
enhancing the robot’s design.

The user interface integrates a control panel that allows
users to input or adjust parameters affecting the robot’s move-
ment, such as limb rotation and size. Additionally, data outputs
are provided to show real-time calculated values, including
joint angles, the position of the COG, and stability metrics,
increasing the understanding and control over the simulation.

IV. TESTING AND RESULTS

In this section, we present the testing results for various
components of the hexapod robot simulator, including leg
pattern generation, inverse kinematics, forward kinematics,
kinematic phase diagram, and walking gait simulation. Each
subsection details the inputs, outputs, and limitations of the
tested functions.

A. Leg Pattern Generation

The Leg Pattern tab in Figure. 3 provides users with the ca-
pability to manipulate the angles of the coxa, femur, and tibia
joints of the hexapod robot’s legs. By adjusting these angles,
users can observe how the leg configuration changes in real-
time within the graphical user interface. During testing, we
found that the Leg Pattern tab effectively allows for intuitive
exploration and visualization of different leg configurations.
However, it is important to note that this function lacks real-
world constraints such as joint limits or collision detection,
which may limit its applicability in certain scenarios.

~@— robothead

—— world-axis

Inverse Kinematics Leg Patter Forward Kinematics Waking Gaits

Adust the angles of the leg oints to define the leg pattern.

Input Parameters:
* Co Angle (o Angle of the coxa Joint, which controls the lateral movement of the leg.
« Femur Angie (B Angle of the femur joint, which controls the forward and backward movement of the leg.
« Tibia Angl [y Angle of the tibia joint, which controls the up and down movement of the leg.

Each leg shares the same pose defined by these angies

Adust the siders for each joint angle and observe the leg pattern visuaization.

a (coal
B lfemur)

7 (tibia)

Fig. 3. Visualization of leg pattern generated for tripod gait.

B. Inverse Kinematics

The Inverse Kinematics tab in Figure. 4 enables users to
specify desired positions for the end effectors of the hexapod
robot’s legs. Using mathematical algorithms, the application
calculates the corresponding joint angles required to achieve
these desired positions. Through testing, we observed that the
Inverse Kinematics function successfully computes accurate
joint angle solutions for a wide range of end effector positions.
This was also compared to other inverse kinematic models
to verify the solutions. However, it is important to note that
like the previous function, this function also assumes ideal
conditions and may not account for practical limitations such
as mechanical constraints or joint limits.

C. Forward Kinematics

The Forward Kinematics tab in Figure. 5 allows users to
visualize the forward kinematics of the hexapod robot, display-
ing the resulting end effector positions based on given joint
angles. By inputting specific joint angle configurations, users
can observe how these angles translate into corresponding end
effector positions. During testing, we found that the Forward
Kinematics function provides insightful visualizations of the
robot’s motion.

D. Kinematic Phase Diagram

The tab in Figure. 6 presents a graphical representation of
the hexapod robot’s kinematic phase diagram, illustrating the
phase relationships between different legs during supporting
and transfer phase. By adjusting parameters such as duty factor
and number of legs, users can observe how these factors
influence the robot’s gait patterns. In testing, we found that
the Kinematic Phase Diagram function offers valuable insights
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Explanation of Input Values:
The nput values represent the rotation angles and transiation distances for the robot legs.

« TK-RX: Rotation angle around the X-axis (roll in degrees.
« K-RY: Rotation angle around the Y-ads (ptch n degrees.
« IK-RZ:Rotation angle around the Z-ads fyaw in degrees.
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« IK-TZ Transiation dstance along the Z-ais in meters:

Adust these values to specify the desired pose for the robot legs.

Visualization of leg configuration obtained from inverse kinematics.
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Explanation of Input Values:
‘The input values represent the angles of rotation for each joint of the robat legs.

« apha Rotation angle of the coa joint In degrees.
« beta: Rotation angle of the femur oint n degrees.
« gana Rotation ange of the tibia jont In degrees.

Adust these values to specify the desired jont angls for the robot legs.

Fig. 5. Visualization of end effector obtained from forward kinematics.

into the robot’s locomotion behavior. However, it is crucial
to note that this function currently supports only forward
symmetric wave gaits, limiting its applicability to other gait
types.
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+ XScale: A factor that controls the nunber of blocks used to represent the phase.
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After providing the input values, cck Update Diagran to generate the Kinematic phase dagran.
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Fig. 6. Visualization of kinematic phase diagram for coordinating leg
movements.

E. Walking Gait

The Walking Gait tab adapted from the Bare minimum
Hexapod simulator project [5] allows users to select and
visualize walking gaits such as tripod gaits. By adjusting
parameters such as step number and gait speed, users can
customize the robot’s walking behavior. During testing, we ob-
served several areas for improvement. This function currently
supports only tripod wave gaits, limiting its applicability to
other gait types.

V. CONCLUSION

In conclusion, the development of the hexapod robot simu-
lator provides step forward in the field of robotics simulation.



By providing engineers, researchers, and hobbyists with a
powerful tool for designing, visualizing, and testing hexapod
robot configurations, this simulator can be used in various
application domains.

The simulator offers a lot of flexibility in configuring
various parameters such as joint angles, leg lengths, and body
dimensions, allowing a wide range of design options. This
real-time visualization capability is particularly valuable for
iteratively refining robot designs and optimizing performance.
However, despite these advantages, the simulator may still can
be improved in various fields implementing different gaits,
including real life constraints and environmental simulation.
It can integrate different of gait patterns into the simulator
would allow users to simulate various locomotion strategies
such as symmetric, symmetric forward wave, and and many
more gaits. Additionally, the development of kinematic phase
diagrams could provide insights into the relationships between
joint angles and gait parameters during different phases of
locomotion.
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